VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

REFERÊNCIAS PARA USO DE GESSO EM LATOSSOLO ARENOSO CULTIVADO COM SOJA

<u>Antonio Nolla¹</u>, Leonardo Luiz Minosso², João Henrique Castaldo¹, Claudinei Minhano Gazola Junior², Thaynara Garcez da Silva², Suzana Zavilenski Fogaça²

RESUMO: A calagem visa a neutralização de Al³⁺ e H⁺ fitotóxicos, entretanto é limitada às camadas superficiais do solo. O gesso é insumo complementar, recomendado sob diferentes métodos, cujas doses variam amplamente. Objetivou-se avaliar métodos de gessagem combinados ou não à calagem, sobre o desenvolvimento de soja em um Latossolo de textura arenosa. Utilizou-se colunas de PVC preenchidas com o solo, e os tratamentos constituíram por doses de gesso (0; 321, 592; 619; 710; 887, 4.198 e 4.308 kg ha⁻¹) combinadas ou não à calagem. Cultivou-se soja e após 130 dias avaliou-se a altura, diâmetro do caule e massa de matéria fresca aérea. A calagem e a gessagem aumentaram desenvolvimento da soja. Com o uso de calcário, a dose média de máxima eficiência técnica de gesso foi de 2181 kg ha⁻¹ Houve resposta linear sobre os atributos de planta com o gesso, na ausência de calagem.

PALAVRAS-CHAVE: Soybean, gessagem, máxima eficiência técnica

INTRODUÇÃO

A soja apresenta sensibilidade à acidez do solo, fator que se torna um empecilho ao crescimento de seu sistema radicular em profundidade no solo e que implica na redução da absorção de nutrientes e água, o que reduz o potencial de rendimento da cultura, sobretudo em períodos de estiagens (Martins, 2013). A calagem é uma prática amplamente utilizada para a neutralização da acidez do solo, além de disponibilizar Ca e Mg. Os efeitos da calagem em áreas de sistema de plantio direto (SPD) têm sido verificados somente nos primeiros (0-10 cm) centímetros do solo, limitando a disponibilidade de Ca e Mg em subsuperfície com o passar do tempo (Anghinoni et al., 2007).

O gesso agrícola (CaSO₄.2H₂O) apresenta a vantagem de ser um produto 200 vezes mais solúvel que o calcário, que disponibiliza Ca e SO₄-2 em solução (Ramos et al., 2006). As recomendações brasileiras para gessagem se baseiam em fórmulas desenvolvidas para diferentes regiões do país (Caires e Guimarães, 2016). O uso dessas fórmulas resulta em diferenças entre as doses de gesso, pois cada fórmula foi elaborada para solos de texturas ¹Docente da Universidade Estadual de Maringá, Estrada da Paca s/n – São Cristóvão – Umuarama –

PR, email: anolla@uem.br

² Discente da Universidade Estadual de Maringá, Estrada da Paca s/n − São Cristóvão − Umuarama − PR

diferentes, indicando doses superiores ou inferiores à real necessidade de gessagem.

Objetivou-se avaliar métodos de gessagem combinados com ou sem calcário, para estabelecer a dose ideal de gesso para soja.

MATERIAL E MÉTODOS

O presente estudo foi conduzido em área experimental na Universidade Estadual de Maringá (UEM), *campus* Regional de Umuarama - PR. Adotou-se como base experimental um Latossolo Vermelho-Amarelo Distrófico típico de textura arenosa (Tabela 1).

Tabela 1 – Caracterização química original e teor de argila da camada de 0-20 cm de um Latossolo Vermelho-Amarelo Distrófico típico de textura arenosa,

pН	Al ³⁺	Ca ²⁺	Mg^{2+}	\mathbf{K}^{+}	P	S	V	m	SB	CTC	Argila
H_2O		cmol	dm-3		mg	dm ⁻³	9	⁄o	cmol	_c dm ⁻³	%
4,63	1,25	0,85	0,38	0,03	4,72	4,38	22,14	49,80	1,26	5,69	11,83
Δ1 ⁺³ C	A_1^{+3} C_2^{-2} e M_2^{-2} e extrator KCl 1 mol I_2^{-1} : P.e. K ⁺ - Mehlich (HCl 0.05 mol I_2^{-1} + H ₂ SO ₄ 0.025 mol I_2^{-1}): S										11-1)· S -

Al⁺³, Ca²⁺ e Mg²⁺ - extrator KCl 1 mol L⁻¹; P e K⁺ - Mehlich (HCl 0,05 mol L⁻¹ + H₂SO₄ 0,025 mol L⁻¹); S - Acetato de amônio e Ácido Acético; V - Saturação por bases; m - Saturação por alumínio; SB - Soma de bases; CTC – Capacidade de troca de cátions a pH 7,0.

O ensaio foi montado em colunas de PVC de 150 mm de diâmetro e 0,5 m de altura, preenchidas pelo Latossolo de textura arenosa. Os tratamentos foram doses de gesso (0, 321, 592, 619, 710, 887, 4.198 e 4.308 kg ha⁻¹) baseadas em métodos de gessagem usados no Brasil (Tabela 3) combinadas com a aplicação ou não de calcário dolomítico (PRNT = 87%) para a V até 60% (2.476 kg ha⁻¹). O delineamento foi fatorial 8X2 com 4 repetições.

Semeou-se soja previamente inoculada (M6410 RR2 PRO), perfazendo 2 plantas por PVC após o desbaste (Estádio VC). A adubação de base foi 120 kg ha⁻¹ de P₂O₅ e 120 kg ha⁻¹ de K₂O. Aos 128 dias após a germinação, coletou-se a parte aérea das plantas e avaliou-se a altura de planta, diâmetro do caule e massa de matéria seca aérea.

Tabela 3 – Métodos de recomendação de gesso agrícola avaliados no experimento

Método de gessagem	Fórmula para cálculo da necessidade de gesso (NG)	Gesso (kg ha ⁻¹)
Textura do Solo (% Argila)	$NG\ (t\ ha^{\text{-}1}) = 0,00034 - 0,002445\ x^{0,5} + 0,0338886\ x - 0,00176366\ x^{1,5}$	321
Teor de Argila – Cerrado I	$NG (kg ha^{-1}) = 50 x Argila (%)$	592
Correção Subsuperficial	NG (kg ha ⁻¹) = 0,25 x Necessidade de Calcário	619
Teor de Argila – São Paulo	$NG (kg ha^{-1}) = 60 x Argila (%)$	710
Teor de Argila – Cerrado II	$NG (kg ha^{-1}) = 75 x Argila (%)$	887
Elevação % Ca na CTCe ¹	NG (t ha^{-1}) = (0,6 x CTC_e – teor de Ca em $cmol_c dm^{-3}$) x 6,4	4.198
CTC e Saturação por bases	NG (t ha ⁻¹) = $(V_2 - V_1) \times T / 50^* \text{ ou } 500^*$	4.308

¹ Caires e Guimarães (2016).

Os dados de planta foram submetidos à análise de variância (teste F - $p \le 0,05$), sendo as doses de gesso submetidas à análise de regressão e as doses de calcário por tukey a 5% de

VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

erro. As doses de máxima eficiência de gesso foram estimadas pela derivação da regressão.

RESULTADOS E DISCUSSÃO

O gesso agrícola, sem uso de calcário, promoveu o crescimento da soja, com resposta linear ao aumento da dose (Figura 1). Isto porque o gesso eleva o teor deCa²⁺ e SO₄²⁻ no solo, que se apresentavam em níveis baixos. O gesso também reduz a atividade de Al³⁺) em camadas profundas do solo (Vitti e Priori, 2009), o que deve ter contribuído para aumentar o crescimento da soja. Na ausência de calagem, o gesso incrementou a massa seca e a altura de plantas em comparação com a testemunha, mas somente em doses superiores a 592 kg ha⁻¹ de gesso houve incremento no diâmetro de caule. O valor de pH do solo interfere nas espécies de Al disponíveis, sendo que em valores de pH-H₂O > 5,5 ocorre a neutralização do Al em sua forma fitotóxica (Al³⁺), o que favorece o crescimento das culturas.

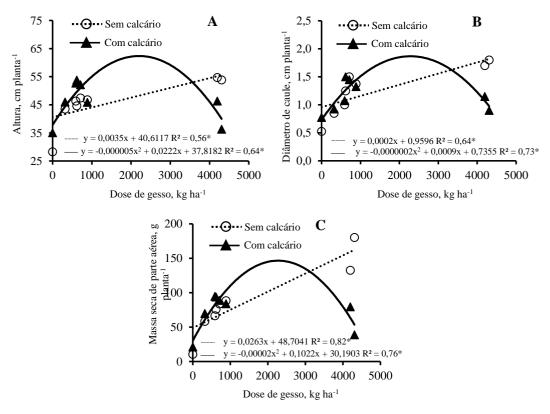


Figura 1 – Altura (A), diâmetro de caule (B) e massa seca de parte aérea (C) de plantas de soja cultivadas em solo submetido a doses de gesso agrícola associado ou não à calagem.

Doses mais elevadas de gesso (> 4 t ha⁻¹) combinadas à calagem reduziram o crescimento da soja, o que pode provocar a lixiviação de nutrientes como magnésio e potássio para camadas profundas no solo (Manetti (2005). Para a altura de planta, diâmetro

¹ Docente da Universidade Estadual de Maringá, Estrada da Paca s/n − São Cristóvão − Umuarama − PR, email: anolla@uem.br

² Discente da Universidade Estadual de Maringá, Estrada da Paca s/n − São Cristóvão − Umuarama − PR

do caule e massa de matéria seca aérea, a dose de máxima eficiência técnica (DMET) de gesso foi de 2176, 2045 e 2323, com média de 2181 kg ha^{-1.} As recomendações de gessagem baseadas na V%, na CTC e na elevação da saturação de Ca na CTC efetiva (Vitti et al., 2008; Caires e Guimarães, 2016) cujas doses de gesso calculadas ultrapassaram 4 t ha⁻¹, podem ter elevado demasiadamente a saturação de Ca²⁺ na CTCe da camada subsuperficial, em detrimento de cátions básicos como o Mg²⁺, que pode ser lixiviado sob altas doses de gesso. Bossolani (2018), ao avaliar a altura de plantas de soja com a gessagem obteve altura máxima eficiência com 2017 kg ha⁻¹ de gesso. As doses de máxima eficiência técnica de gesso para soja foram, em média, 48,05% e 49,37%inferiores às doses de gesso baseadas nos métodos de Vitti et al. (2008) e Caires e Guimarães (2016), respectivamente. Isso indica a metade da dose recomendada por estes autores como ideal para o crescimento de soja em solo de textura arenosa. Devido à baixa capacidade de adsorção do sistema coloidal em solos arenosos, doses elevadas de gesso (> DMET média de 2181 kg ha⁻¹) podem ser responsáveis por desequilíbrios nutricionais, interferindo na absorção de nutrientes pela soja.

CONCLUSÕES

A calagem e a gessagem promoveram aumento no desenvolvimento da soja. Com o uso de calcário, a dose média de máxima eficiência técnica de gesso foi de 2.181 kg ha⁻¹.

AGRADECIMENTOS

Ao CNPq pela disponibilidade de bolsa ao segundo autor.

REFERÊNCIAS

- Anghinoni I. Fertilidade do solo e seu manejo em sistema plantio direto. In: Novais RF; Venegas, AVH, Barros, NF, Fontes, RLF, Cantarutti, RB, Neves, J.C.L, editores. Fertilidade do solo. Viçosa: Sociedade Brasileira de Ciência do Solo; 2007. p.873-928.
- Caires EF, Guimarães AM. Recomendação de gesso para solos sob plantio direto da Região Sul do Brasil. In: Fertbio, 2016, Goiânia. Goiânia: SBCS NRCO. 2016. p 1-4.
- Manetti FA. Momento de aplicação de calcário e gesso em um Latossolo Vermelho Distrófico, no desenvolvimento inicial do milho. [Dissertação]. Botucatu: Universidade Estadual Paulista, 2005.
- Martins AP Acidez do solo e reaplicação de calcário em sistema de Integração Lavoura-Pecuária em plantio direto. [Dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2013.
- RAMOS, L.A.; NOLLA, A.; KONRDÖRFER, G.H.; PEREIRA, H.S.; CAMARGO, M.S. Reatividade de corretivos da acidez e condicionadores de solo em colunas de lixiviação. Revista Brasileira de Ciência do Solo, Viçosa, v.30, p.849-857, 2006.
- Vitti GC, Priori JC Calcário e Gesso: os corretivos essenciais ao Plantio Direto. Rev Vis Agr, 2009; 9:30-34. https://www.esalq.usp.br/visaoagricola/sites/default/files/VA9-Fertilidade01.pdf
- Vitti GC, Luz PHC, Malavolta E, Dias AS, Serrano CGE. Uso do gesso em sistemas de produção agrícola. 1st ed. Piracicaba: GAPE, 2008. 104p.