VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

CALAGEM E GESSAGEM SUPERFICIAIS SOB SISTEMA PLANTIO DIRETO: ESTRATIFICAÇÃO DOS TEORES DE MAGNÉSIO.

<u>Victória Koszalka¹</u>, Christian Lopes², Emerson Eurich Sprotte³, Leysse Silla⁴, Marcelo Marques Lopes Muller.⁵

RESUMO: O objetivo deste estudo foi avaliar os efeitos da gessagem e da calagem sobre a mobilidade dos ions Ca²⁺ e Mg²⁺ do solo em um experimento de longa duração sobre SPD. O delineamento experimental foram blocos ao acaso com parcelas subdivididas, sendo as parcelas 5 doses de GA (gesso agrícola): 0, 3, 6, 9 e 12 t ha⁻¹ e nas subparcelas três níveis de calagem na camada de 0,0-0,2m: 1) 0 t ha⁻¹ de calcário (controle); 2) 5,67 t ha⁻¹ de calcário dolomítico PRNT 95%, equivalendo à necessidade de calagem (NC) para atingir V=70%; e 3) 10,21 t ha⁻¹ do mesmo calcário, equivalendo à NC para atingir V=100. O solo foi amostrado até 0,8m de profundidade para análises químicas. A calagem aumentou os teores de Mg²⁺ em todas as camdas de solo analisadas. O GA teve efeito significativo nas camadas de 0,4-0,6m e 0,6-0,8m causou redução nos teores de Mg²⁺. Houve interação gessagem *vs.* calagem de 0,1-0,2m e 0,2-0,4m para Mg²⁺.

PALAVRAS-CHAVE: calcário dolomítico, fosfogesso, mobilidade.

INTRODUÇÃO

A calagem é uma pratica essencial na agricultura em solos ácidos, o calcário quando dissolvido libera íons de cálcio (Ca⁺²) e magnésio (Mg²⁺), o que aumenta a saturação do solo por bases (V%). Estudos tem mostrado que em áreas manejadas sobre Sistema de Plantio Direto (SPD), tem se encontrado nas camadas de 0,0-0,05m e 0,05-0,10m elevados teores de bases trocáveis (Anghinoni e Salet, 1998). Enquanto em profundidade se tem o oposto dessa situação, isso porque o corretivo apresenta uma reação lenta e baixa mobilidade do calcário no perfil do solo (Ernani et al., 2001).

O uso de gesso agrícola (CaSO₄.2H₂O), é uma forma de se manejar a acidez do solo e adicionar Ca²⁺ e S-SO₄²⁻ nas camadas mais profundas, devido o GA apresenta maior ¹Mestranda, Universidade Estadual do Centro-Oeste, Guarapuava, e vic.koszalka@gmail.com. ²Mestrando, Universidade Estadual do Centro-Oeste, Guarapuava, e christian42lopes@gmail.com. ³Guadruando, Universidade Estadual do Centro-Oeste, Guarapuava, e emersonsprotte@gmail.com ⁴Estagiária, Universidade Estadual do Centro-Oeste, Guarapuava e leysse.silla@gmail.com. ⁵Orientador Universidade Estadual do Centro-Oeste, Guarapuava, mmuller@unicentro.br

mobilidade vertical, reduzindo assim a atividade tóxica do alumínio (Al^{3+}) (Neis et al., 2010). O sulfato também faz com que ocorra o carreamento de cátions basicos do solo (Mg^{2+}, K^+) , favorecendo assim o enrazaimento das plantas cultivadas.

O objetivo deste trabalho foi avaliar a mobilidade do Mg²⁺ a longo prazo no perfil do solo pela aplicação superficial de gesso agrícola e calcário dolomítico num experimento de longa duração sobre SPD.

MATERIAL E MÉTODOS

O experimento foi realizado no *Campus* CEDETEG da UNICENTRO, na cidade de Guarapuava, PR. A área é manejada sobre SPD desde de 2005 e solo é classificado como Latossolo Bruno (Michalovicz, 2012), utilizando delineamento de blocos ao acaso, foram aplicadas cinco doses de GA (gesso agrícola) (0, 3, 6, 9 e 12 t ha⁻¹). Em 2014, as parcelas foram subdivididas para a aplicação de três níveis de calagem: 1) 0,0 t ha⁻¹ de calcário; 2) 5,67 t ha⁻¹ de calcário dolomítico PRNT 95%, equivalendo à NC para atingir saturação por bases (V) de 70% na camada de 0,0-0,2 m; e 3) 10,21 t ha⁻¹ do mesmo calcário, equivalendo à NC para atingir V de 100% na camada de 0,0-0,2 m. Em 2018, o solo foi extratificado até a profundidade de 0,80m. As amostras foram analisadas no Laboratório de Solos e Nutrição de Plantas do Departamento de Agronomia da Unicentro, conforme EMBRAPA (1997). Os resultados foram submetidos à análise de variância (p ≤ 0,05), com regressão para as doses de GA e teste de Tukey para calagem, com auxílio do software estatístico Sisvar.

RESULTADOS E DISCUSSÃO

Para os teores de Mg^{2+} (Tabela 1) observou-se efeito do calcário em todas as camadas amostradas, sendo que de 0,0-0,05m e 0,05-0,1m, os níveis de calagem de V=100% e V=70% resultaram em maior teor de Mg^{2+} conforme a ordem: 10,21 t $ha^{-1} > 5,67$ t $ha^{-1} > 0$ t ha^{-1} . Nas camadas de 0,1-0,2m e 0,2-0,4m não houve efeito das doses de gesso, mas houve interação significativa entre gesso e calcário, sendo que na camada de 0,1-0,2m não houve efeito da calagem combinada às doses de 0 e 3 t ha^{-1} de gesso, e nas demais doses de gesso a calagem aumentou os teores de Mg^{2+} no solo.

VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

Tabela 1: Resumo das análises de variância, de regressão e médias dos teores de Mg²⁺ trocável no solo sob doses de gesso agrícola e calcário aplicados na superfície do solo em plantio direto (Guarapuava 2018).

Prof.	Gesso	os na superfície do solo em plantio direto (Guarapuava 2018). Mg ²⁺ (cmol _c dm ⁻³)		
(m)	(t ha ⁻¹)	CO	C1	C2
0-0,05	0 (controle)	2,66	3,55	4,96
	3	1,99	4,26	5,44
	6	1,90	4,10	4,33
	9	1,59	4,06	5,22
	12	0,85	3,73	5,30
	Média² (X)	1,79a	3,94b	5,05c
0,05-0,10	0 (controle)	1,79	2,56	3,07
	3	1,75	2,99	3,33
	6	1,41	2,57	3,84
	9	0,88	2,81	4,00
	12	0,60	2,67	3,95
	Média (^X)	1,28a	2,92b	3,64c
0,10-0,20	0 (controle)	1,90A	1,87A	2,41A
	3	1,61A	2,21A	2,18ª
	6	1,28A	2,45B	1,90°
	9	0,79A	1,95B	2,65B
	12 _	0,54A	1,68B	2,03
	Média (^X)	1,22a	2,03b	2,23b
	Gesso	n.s		
	Gesso x Calcário	L***/0,98	n.s.	n.s.
0,20-0,40	0 (controle)	1,60A	1,35A	1,56A
	3	1,15A	1,83B	2,12B
	6	0,86A	1,68B	1,96B
	9	0,68A	1,45B	1,84B
	12	0,52A	1,37B	2,21C
	Média (^X)	0,96a	1,53b	1,94c
	Gesso		n.s	
	Gesso x Calcário	L***/0,94	n.s.	n.s.
0,40-0,60	0 (controle)	1,41	1,36	1,55
	3	1,05	1,31	1,31
	6	0,73	1,19	1,41
	9	0,46	1,15	1,51
	12 _	0,37	0,73	1,05
	Média (^X)	0,80a	1,15b	1,36b
	Gesso		L***/0,94	
0,60-0,80	0 (controle)	1,61	1,82	1,62
	3	1,24	1,69	1,31
	6	0,92	1,35	1,71
	9	0,45	1,07	1,61
	12	0,37	0,56	1,15
	Média (^{X̅})	0,92a	1,30b	1,48b
	Gesso	- /	L***/0.96	,

 $^{^{1}}$ CO = sem aplicação de calcário, C1 = 5,67 t ha $^{-1}$ de calcário (dolomítico, PRNT 95%), equivalendo à necessidade de calagem (NC) para atingir saturação por bases (V) de 70% na camada de 0,0-0,2 m de profundidade; e 3) 10,21 t ha $^{-1}$ de calcário, equivalendo à NC para atingir V de 100% na camada de 0,0-0,2 m; 2 Média = média em função das doses de gesso, para cada nível de calagem , para comparação por Tukey (α = 0,05); n.s.: não significativo.

¹Mestranda, Universidade Estadual do Centro-Oeste, Guarapuava, e vic.koszalka@gmail.com.

²Mestrando, Universidade Estadual do Centro-Oeste, Guarapuava, e christian42lopes@gmail.com.

³Guadruando, Universidade Estadual do Centro-Oeste, Guarapuava, e emersonsprotte@gmail.com

⁴Estagiária, Universidade Estadual do Centro-Oeste, Guarapuava e leysse.silla@gmail.com.

⁵Orientador Universidade Estadual do Centro-Oeste, Guarapuava, mmuller@unicentro.br

Na camada de 0,2-0,4m, não houve efeito da calagem com a dose de 0 t ha⁻¹ de gesso, e nas demais doses a calagem aumentou os teores de Mg²⁺ no solo. Nas camadas de 0,4-0,6m e 0,6-0,8m, houve queda linear dos teores de Mg²⁺ em função das doses de gesso, bem como diferença entre o controle e os tratamentos com calagem, mas sem diferença entre as doses de calcário.Os resultados corroboram com os encontrados por Caires et al. (1999) o qual observou, que a aplicação de gesso, associadas a calagem, pode causar lixiviação dos fons de Mg, reduzindo assim os teores de Mg trocável em todo o perfil do solo.

CONCLUSÕES

A calagem elevou os teores de Mg, proporcionalmente às doses de calcário aplicadas. Houve interação calagem vs. gessagem nas camadas de 0,1-0,2m e 0,2-0,4m, onde o efeito da calagem em aumentar os teores de Mg²⁺ do solo foi potencializado pela combinação com as maiores doses de gesso. A aplicação de gesso agrícola, isoladamente, causou redução nos teores de Mg²⁺ do solo nas camadas de 0,4-0,6m e 0,6-0,8m.

REFERÊNCIAS

- Anghinoni, I., Salet, R.L. Amostragem do solo e as recomendações de adubação e calagem no sistema plantio direto. In: NUERNBERG, N. J., (ed.). Conceitos e fundamentos do sistema plantio direto. Lages: Núcleo Regional Sul/SBCS, 1998; 27-52.
- Caires, E. F., Fonseca, A. F., Mendes, J., Chueiri, W. A., Madruga, E. F. Produção de milho, trigo e soja em função das alterações das características químicas do solo pela aplicação de calcário e gesso na superfície, em sistema de plantio direto. Rev Bras Cienc Solo. 1999; 23:315-327.
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro: Embrapa, 1997.
- Ernani, P. R.; Ribeiro, M. S.; Bayer, C. Modificações químicas em solos ácidos ocasionadas pelo método de aplicação de corretivos da acidez e de gesso agrícola. Scietia Agricola. 2001; 58:825-31. http://dx.doi.org/10.1590/S0103-90162001000400026.
- Michalovicz L. Atributos químicos do solo e resposta da sucessão milho-cevada-feijão trigo influenciados por doses e parcelamento de gesso em plantio direto [Dissertação]. Guarapuava: Universidade Estadual do Centro-Oeste, Unicentro-PR.2012.
- NEIS, L. et al. Gesso agrícola e rendimento de grãos de soja na região do sudoeste de Goiás. Rev Bras Cien Solo, 2010; 34: 409-16. http://dx.doi.org/10.1590/S0100-06832010000200014.