VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

ATRIBUTOS QUIMICOS DO SOLO EM SISTEMA INTEGRADO DE PRODUÇÃO AGROPECUÁRIA SOB APLICAÇÃO DE FOSFATOS

Keli Cristina Silva Guera¹, Adriel Ferreira da Fonseca², Fernanda Ribeiro³

RESUMO: O objetivo deste trabalho foi avaliar os atributos químicos no solo em sistema integrado de produção agropecuária (SIPA), ao longo cinco anos, decorrente da aplicação anual de fosfatos de diferentes solubilidades. O delineamento empregado foi de blocos casualizados em esquema fatorial incompleto, com quatro repetições. Foram aplicadas doses (0 e 180 kg ha⁻¹) de P₂O₅ total, na superfície do solo, por ocasião da semeadura da forrageira de inverno, na forma de superfosfato triplo (SFT), fosfato natural reativo – Arad (FNR) e termofosfato magnesiano (TFM). Amostras de solo foram coletadas aos 24, 36, 48 e 60 meses após o início do experimento, visando determinar, pH (CaCl₂), saturação por bases (V%) e as porcentagens (%) de Ca, Mg e K na V% na camada de 0-20 cm. A %Mg e V% aumentaram com a aplicação de TFM e, pode ter contribuído para amenizar a acidez do solo. Houve uma redução na %Ca e % K aos 60 meses. Altas concentrações de Ca²⁺ e K⁺ no solo e concentrações muito altas de Mg²⁺, foram observadas na camada de 0-20 cm. Em decorrência dessas relações, houve um deslocamento de K⁺ para as camadas mais profundas do solo.

PALAVRAS-CHAVE: intensificação sustentável, bases trocáveis, fosfatos solúveis e insolúveis em água

INTRODUÇÃO

O sistema integrado de produção agropecuária (SIPA) é uma alternativa para a intensificação sustentável, pois este reúne várias benesses no tocante à sustentabilidade da produção de alimentos. Neste sistema, a rotação de pastagens anuais, destinadas à alimentação animal, e culturas destinadas à produção de grãos, é uma estratégia de elevada importância no país, pois permite maior produção de fibras, energia e alimentos por unidade de área (Lemaire et al., 2019).

Em sua maioria, os solos das regiões tropicais e subtropicais são naturalmente ácidos, apresentando baixa saturação por bases (V%) e elevada saturação por alumínio (m%), sendo estes fatores os mais limitantes à produtividade. Porém, mudanças significativas nos atributos

¹Doutoranda do Programa de Pós Graduação em Agronomia, Bolsista CAPES, CPF 080664139-80, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, PR, e-mail: keliguera@outlook.com.

²Professor Adjunto, Departamento de Ciência do Solo e Engenharia Agrícola, Bolsista Produtividade em Pesquisa do CNPq, CPF 919339949-91, Universidade Estadual de Ponta Grossa. E-mail: adrielff@gmail.com.

³Graduanda do Curso de Agronomia, Bolsista do PIBIC/CNPq, CPF 080124889-22, Universidade Estadual de Ponta Grossa, E-mail: ferdaribeiro@hotmail.com.

químicos do solo, quando estes são manejados em SIPA, têm sido observadas (Martins et al., 2014). A alta ciclagem biogeoquímica em SIPA contribui para reposição de nutrientes do solo, através da decomposição de resíduos vegetais e animais. Além disso, o pastejo animal pode resultar em maior biomassa produzida, e dessa forma, promover a liberação de bases trocáveis, além de poder atenuar, ao longo do tempo, a acidez do solo (Martins et al., 2014).

Após o controle da acidez do solo, outro fator limitante à produtividade das culturas tem sido as baixas concentrações de fósforo disponível. O uso de fontes com elevada solubilidade, tal como o superfosfato triplo (SFT) pode ser facilmente transformada em formas não disponíveis à planta, além de apresentar reação de ácida no solo (Chien et al., 2011). Em contrapartida, a eficiência de fosfatos insolúveis em água, tais como fosfato natural reativo (FNR) e termofosfato magnesiano (TFM), tende a aumentar ao longo do tempo. Além disso, a reação no solo dos fosfatos insolúveis em água, pode promover a diminuição de H⁺ na solução no solo, seja por dissociação da superfície dos coloides (Korndörfer et al., 1999) ou, pelo consumo de prótons para a dissolução da partícula de fosfatos de cálcio, podendo aumentar o pH do solo em longo prazo.

O objetivo deste trabalho foi avaliar os atributos químicos no solo em SIPA, ao longo de 60 meses, decorrente da aplicação anual, na superfície do solo, de fosfatos de diferentes solubilidades

MATERIAL E MÉTODOS

O experimento foi conduzido durante 60 meses (abril/2009 a 2014), no município de Castro - PR (24°51'49" S, 49°56'61" W), com clima predominante do tipo Cfb, em SIPA sob Cambissolo Háplico. A camada de 0-20 cm do solo, no início do experimento, apresentava os seguintes atributos químicos e granulométricos: pH (CaCl₂) 4,8; acidez total (H+Al) 9,2 cmolc dm⁻³; saturação por bases 38%; Al³⁺, Ca²⁺, Mg²⁺ e K⁺ de 0,04; 3,1; 2,3 e 0,35 cmolc dm⁻³, respectivamente; P disponível [resina trocadora de íons (RTI)] 18 mg dm⁻³ e carbono orgânico total (Walkley-Black) de 29,6 g dm⁻³, e 605, 225 e 170 g kg⁻¹ de argila, silte e areia, respectivamente.

O delineamento experimental foi de blocos casualizados em esquema fatorial incompleto (3x3+1), com quatro repetições. Os tratamentos consistiram em três (03) fontes de P [superfosfato triplo (SFT), fosfato natural reativo-Arad (FNR) e termofosfato magnesiano (TFM)] e duas (02) doses (0 e 180 kg ha⁻¹ de P₂O₅ total) de P. Os fosfatos foram aplicados anualmente em superfície, por ocasião da semeadura da forrageira de inverno.

No mês de abril, aos 24, 36, 48 e 60 meses após o início do experimento, foram coletadas

VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

amostras compostas de terra das camadas de 0-5, 5-10, 10-15, 15-20 e 20-30 cm e, preparadas para posterior análise. As amostras foram analisadas visando determinar: (i) acidez ativa (pH) (CaCl₂ 0,01 mol L⁻¹); (ii) Ca e Mg trocáveis (KCl 1,0 mol L⁻¹) e; (iv) K trocável (Mehlich-1). Ainda foi determinada a saturação por bases (V%) e as porcentagens (%) de Ca, Mg e K na V%. Os atributos químicos foram estimados para 0-20 cm com base na média ponderada das camadas de solo analisadas.

Os resultados foram submetidos à análise estatística univariada de acordo com o modelo de experimento em blocos casualizados em esquema fatorial incompleto. Nos casos de F significativo (p < 0,05), foi aplicado o teste de Tukey (α = 0,05). Todas as análises estatísticas foram realizadas mediante uso do programa SAS Versão 9.2 (SAS Institute Inc. 9.1.2.)

RESULTADOS E DISCUSSÃO

O uso de TFM (180 kg ha⁻¹ de P₂O₅ total) promoveu aumento da %Mg (9,35%) e, consequentemente, da V% (57,4%) na camada de 0-20 cm do solo aos 60 meses de avaliação (Figuras 1). Além de P, o TFM possui Mg em sua composição química. Assim, a contribuição do Mg (42,2 kg ha⁻¹ ano⁻¹ de Mg²⁺) devido a aplicação de TFM, influenciou o valor da V%, resultando em aumento destes atributos químicos do solo.

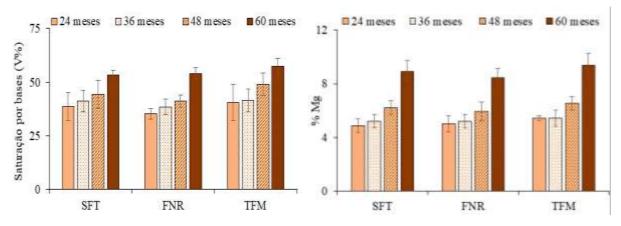


Figura 1. Saturação por bases (V%) (à esquerda) e porcentagem de magnésio na saturação por bases (%Mg) (à direita) na camada de 0-20 cm do solo tratado com fosfatos solúveis e insolúveis em água aplicados anualmente (180 kg ha^{-1} de P_2O_5 total) na superfície em sistema integrado de produção agropecuária.

Maior valor de pH (5.4) foi observado aos 60 meses de avaliação com a aplicação de fosfatos em superfície (P<0,001) (Figura 2) porém, não houve influência do uso das diferentes fontes fosfatadas. O silicato de magnésio (MgSiO₃), constituinte de fosfatos como o TFM, pode levar a um aumento no pH do solo, gerado a partir da reação em solos ácidos (Korndörfer et al., 1999). Além disso, os ganhos em matéria orgânica no solo, a presença dos animais, a alta ciclagem de nutrientes (Martins et al., 2014) e o correto manejo da pastagem (Lemaire et al.,

2019), são fatores observados ao longo do tempo em SIPA, que podem ter contribuído com a melhoria dos atributos químicos do solo.

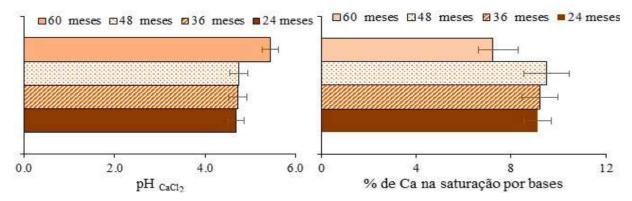


Figura 2. Valores de pH (CaCl₂) (à esquerda) e porcentagem de cálcio na saturação por bases (%Ca) (à direita) na camada de 0-20 cm do solo tratado com fosfatos solúveis e insolúveis em água aplicados anualmente (180 kg ha⁻¹ de P_2O_5 total) na superfície em sistema integrado de produção agropecuária

Houve uma redução na %Ca e % K aos 60 meses (P <0,01) (Figura 2). Salienta-se que, durante o período experimental, altas concentrações de Ca²⁺ e K⁺ no solo e concentrações muito altas de Mg²⁺, foram observadas na camada de 0-20 cm segundo SBCS/NEPAR (2017). Em decorrência dessas relações, houve um deslocamento de K⁺ para as camadas mais profundas do solo.

CONCLUSÕES

A aplicação anual de termofosfato magnesiano na superfície do solo, além de fornecer P, pode ser eficiente em suprir Mg às culturas, aumentar a saturação por bases e, pode auxiliar na atenuação da acidez do solo em sistemas integrados de produção agropecuária.

REFERÊNCIAS

Chien, SH et al. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosyst. 2011; 89:229-255.

Korndörfer, GH et al. Efeito do silicato de cálcio no teor de silício no solo e na produção de grãos de arroz de sequeiro. Rev. Bras. Ciênc. Solo. 1999; 23:625-641.

Lemaire, G et al. Agroecosystem diversity: Reconciling contemporary agriculture and environmental quality. Academic Press, London, 2019.

Martins, AP et al. Soil acidification and basic cation use efficiency in an integrated no-till crop—livestock system under different grazing intensities. Agric. Ecosyst. Environ. 2014; 195:18-28.

Sociedade Brasileira de Ciência do Solo. Núcleo Estadual Paraná. Manual de adubação e calagem para o Estado do Paraná. Curitiba: SBCS/NEPAR, 2017.