VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

SELEÇÃO DE INDICADORES PARA DISCRIMINAR SISTEMAS DE PREPARO E AVALIAR A QUALIDADE EM LATOSSOLO VERMELHO

<u>Regiane Kazmierczak¹</u>, Neyde Fabíola Balarezo Giarola², Alisson Marcos Fogaça³, Flávia Biasso Riferte⁴, Josiane Bürkner dos Santos⁵, Sandoval Carpinelli⁶; Andressa Dranski⁷, Ariane Lentice de Paula⁸

RESUMO: Os sistemas de preparo do solo visam melhorar as condições do solo para as culturas e afetam os atributos do solo. Alguns atributos são afetados em maior magnitude, e análises estatísticas podem ser utilizadas para encontrar os atributos mais sensíveis (indicadores), que permitam discriminar os sistemas de preparo do solo e possam ser utilizados para realizar avaliação de qualidade do solo. O objetivo deste estudo é identificar os indicadores que discriminam os sistemas de preparo do solo e podem ser utilizados em avaliações de qualidade do solo. Foram avaliados 16 atributos físicos e químicos de um Latossolo Vermelho muito argiloso, cultivado por um longo período de tempo no Plantio Direto (PD), Preparo Convencional (PC) e Preparo Mínimo (PM). Os atributos do solo mais sensíveis (indicadores) foram selecionados por análise discriminante canônica. Microporosidade (Mip), condutividade hidráulica saturada (Kfs), pH (CaCl₂), cálcio (Ca), magnésio (Mg), capacidade de troca de cátions (CTC) e saturação por bases (V%) foram os indicadores mais eficientes em discriminar os sistemas de preparo do solo. Estes indicadores podem ser utilizados para futuras avaliações e monitoramento da qualidade do solo dos sistemas de preparo em regiões e condições similares.

PALAVRAS-CHAVE: Qualidade do solo, preparo do solo, indicadores sensíveis.

INTRODUÇÃO

Os sistemas de preparo do solo visam melhorar as condições do solo para o estabelecimento e desenvolvimento das culturas. O sistema de preparo convencional (PC) foi dominante no Brasil durante o século XX. No entanto, devido a degradação do solo desencadeada pelo revolvimento, o sistema de plantio direto (PD) ganhou destaque em relação ao PC. Porém, devido à preocupação com a compactação do solo gerada pelo PD, o sistema de preparo mínimo (PM) começou a ser adotado, onde são realizados preparos menos intensivos no solo (Reichert et al., 2016; Nunes et al, 2019).

Os sistemas de preparo influenciam os atributos do solo, porém, alguns com maior magnitude. Selecionar os que apresentam maior poder de discriminação proporciona a

¹Doutoranda em Agronomia, UEPG, Ponta Grossa-PR; e-mail: regikazi@hotmail.com. ²Docente do curso de Agronomia, UEPG, Ponta Grossa-PR. ³Mestrando em Agronomia, UEPG, Ponta Grossa-PR. ^{4,6,7,8}Doutorando (a) em Agronomia, UEPG, Ponta Grossa-PR. ⁵Pesquisadora do IAPAR, Ponta Grossa-PR.

composição de um conjunto de indicadores sensíveis, os quais podem ser usados em futuras avaliações e monitoramentos, como de qualidade do solo. Doran e Parkin (1994) e Muñozrojas (2018) ressaltam que, para um atributo ser considerado um indicador de qualidade do solo, ele deve ser sensível às variações de manejo e clima e oferecer informações das funções do solo. Além disso, a seleção de indicadores reduz tempo e custo em avaliações futuras.

Para atingir tal objetivo pode-se utilizar a análise discriminante canônica (ADC), que é uma técnica eficiente para encontrar as variáveis com maior peso de discriminação (Cruz-Castillo et al., 1994), porém, pouco explorada. Para diferentes condições de solo e clima, o uso e manejo do solo pode influenciar de maneira diferente os atributos do solo, podendo assim serem formados conjuntos específicos de dados para cada condição. O objetivo deste trabalho é identificar, por meio da ADC, os indicadores físicos e químicos do solo que discriminam os sistemas de preparo do solo e podem ser utilizados em avaliações de qualidade do solo, em Latossolo Vermelho de textura muito argilosa de clima subtropical.

MATERIAL E MÉTODOS

O estudo foi conduzido na Estação Polo do IAPAR, no município de Ponta Grossa (PR), em um Latossolo Vermelho textura muito argilosa, em clima Cfb, segundo Koppen. A área experimental foi dividida em três macroparcelas que foram cultivadas por 36 anos sob PD e PC e 28 anos sob PM. As coletas foram realizadas na camada de 0-10 cm, em malha regular, com 42 pontos por preparo.

Os atributos físicos do solo medidos foram a densidade do solo (Ds), porosidade total (PT), macroporosidade (Map) e microporosidade (Mip) utilizado a metodologia da Embrapa (2011), condutividade hidráulica saturada (Kfs), conforme Bagarello et al. (2004) e resistência do solo a penetração (RP) com penetrógrafo de campo penetroLog (Falker, BR). Os atributos químicos do solo medidos foram: pH (H₂O), pH (CaCl₂), alumínio (Al), cálcio (Ca), magnésio (Mg), fósforo (P), potássio (K), carbono orgânico total (COT), capacidade de troca de cátions (CTC) e saturação por bases (V%).

As análises estatísticas foram realizadas com o software R. Foi realizado o teste de normalidade univariado de Shapiro-Wilk e multivariado de Royston. Os dados que não apresentaram normalidade foram transformados através da raiz quadrada ou logaritmo natural. Utilizou-se a ADC conforme relatado por Cruz-Castillo et al. (1994), primeiramente com todos os atributos e posteriormente nos indicadores selecionados, obtendo a função discriminante canônica (FDC) dos indicadores que melhor discriminam os preparos. O teste Lambda de Wilks foi utilizado para verificar a significância das FDC.

VI Reunião Paranaense de Ciência do Solo-RPCS

28 a 31 de maio de 2019 Ponta Grossa - PR

RESULTADOS E DISCUSSÃO

Os atributos que não apresentaram distribuição normal foram P, RP, Kfs e K, cujo primeiro foi transformado por raiz quadrada e os demais por logaritmo natural. Houve significância para as duas FDC. As correlações mais fortes entre a primeira FDC e os dados originais selecionou indicadores físicos: Mip e Kfs (Tabela 01).

Tabela 01: Teste de significância e correlação entre a função discriminante e as variáveis originais.

	FDC 1	FDC 2	•		
F	63,52	56,79	pH (H ₂ O)	0,24	0,65
Significância ¹	2,20E-16	2,20E-16	pH (CaCl ₂)	0,45	0,72
			Al (cmol _c dm ⁻³)	-0,33	-0,64
	Correlação		Ca (cmol _c dm ⁻³)	-0,16	0,74
Ds (g cm ⁻³)	-0,08	-0,02	Mg (cmol _c dm ⁻³)	-0,24	0,94
PT (%)	0,10	-0,05	P (mg dm ⁻³)	-0,57	-0,03
Map (%)	0,69	0,20	K (cmol _c dm ⁻³)	-0,21	0,22
Mip (%)	-0,80	-0,27	COT (g dm ⁻³)	-0,18	0,00
Kfs (cm hora-1)	0,78	0,23	CTC (cmol _c dm ⁻³)	-0,55	0,71
RP (Mpa)	-0,54	-0,43	V (%)	-0,16	0,94

¹Probabilidade da correlação dos escores da FDC com as variáveis originais ser igual a 0.

As correlações mais fortes entre a segunda FDC e os dados originais resultou na seleção dos indicadores químicos: pH (CaCl₂), Ca, Mg, CTC e V%. Com base nos resultados dos indicadores selecionados, foi desenvolvido dois modelos de FDC envolvendo os indicadores selecionadas. Houve significância para as duas FDC obtidas.

A FDC 01 representou 53,06% da variância com maior peso para os indicadores físicos: Mip e Kfs. A FDC 02 representou 46,94% da variância e foi representada com maior peso pelos indicadores químicos: pH (CaCl₂), Ca, Mg, CTC e V%. Portanto, a FDC 01 representou as funções físicas do solo e a FDC 02 representou as funções químicas do solo. Reichert et al. (2016) reforçam a importância de indicadores físicos na comparação entre preparos do solo.

 $FDC\ 01 = (-0.83*Mip) + (0.80*Kfs) + (0.50*pH\ (CaCl_2) + (-0.12*Ca) + (-0.20*Mg) + (-0.52*CTC) + (-0.11*V%).$

FDC 02 = (-0.23*Mip) + (0.19*Kfs) + (0.70*pH (CaCl₂) + (0.75*Ca) + (0.96*Mg) + (0.74*CTC) + (0.96*V%).

A ADC foi eficiente em selecionar os indicadores que podem ser usados na avaliação da qualidade do solo. A ADC também foi usada para selecionar moléculas de agroquímicos em amostras de solo (Gonçalves et al., 2006) e distinguir diferentes usos da terra (Bhattacharjya et al., 2017).

¹Doutoranda em Agronomia, UEPG, Ponta Grossa-PR; e-mail: regikazi@hotmail.com. ²Docente do curso de Agronomia, UEPG, Ponta Grossa-PR. ³Mestrando em Agronomia, UEPG, Ponta Grossa-PR. ^{4,6,7,8}Doutorando (a) em Agronomia, UEPG, Ponta Grossa-PR. ⁵Pesquisadora do IAPAR, Ponta Grossa-PR.

A figura 01 ilustra a separação dos grupos PD, PC e PM. A primeira função canônica discriminou os três preparos, já a segunda função canônica discriminou o PM dos demais.

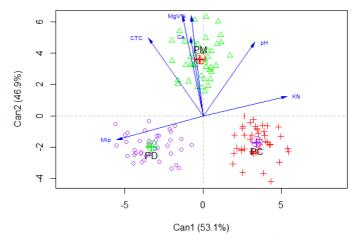


Fig. 1. Biplot de funções discriminantes canônicas para separação de diferentes sistemas de preparo do solo.

CONCLUSÕES

Os indicadores selecionados foram: Mip, Kfs, pH (CaCl₂), Ca, Mg, CTC e V%, e estes podem ser utilizados para a avaliação da qualidade do solo no local estudado e por futuros pesquisadores para avaliações dos sistemas de preparo do solo para Latossolos de regiões similares.

REFERÊNCIAS

Bhattacharjya S, Bhaduri D, Chauhan S, Chandra R, Raverkar, KP, Pareek N. Comparative evaluation of three contrasting land use systems for soil carbon, microbial and biochemical indicators in North-Western Himalaya. Ecol Eng. 2017; 103:21-30. https://doi.org/https://doi.org.ez82.periodicos.capes.gov.br/10.1016/j.ecoleng.2017.03.001

Cruz-Castillo JG, Ganeshanandam S, MacKay BR, Lawes GS, Lawoko CRO, Woolley DJ. Applications of Canonical Discriminant Analysis in Horticultural Research. Hort Sci. 1994; 29:1115-19.

https://doi.org/https://pdfs.semanticscholar.org/5a21/c09b62d780d1d1a6efbed4aa4d8a86ba5d79.pdf

Doran JW, Parkin TB. Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart B, editores. Defining soil quality for a sustainable environment. USA: Madison, Soil Science Society of America, 1994. p.3-21.

Gonçalves C, Esteves da Silva JCG, Alpendurada MF. Chemometric interpretation of pesticide occurence in soil samples from an intensive horticulture area in north Portugal. Anal Chim Acta. 2006; 560:164-71. https://doi.org/https://doi.org/10.1016/j.aca.2005.12.021

Nunes MR, Pauletto EA, Denardin JE, Suzuki LEAS, van Es HM. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil Tillage Res. 2019; 186:183-90. https://doi.org/https://doi.org/10.1016/j.still.2018.10.017

Muñoz-rojas M. Soil quality indicators: critical tools in ecosystem restoration. Environ Sci Heal. 2018;5:47–52. https://doi.org/10.1016/j.coesh.2018.04.007

Reichert JM, Rosa VT, Vogelmann ES, Rosa DP, Horn R, Reinert DJ, Denardin JE. Conceptual framework for capacity and intensity physical soil properties affected by short and long-term (14 years) continuous no-tillage and controlled traffic. Soil Tillage Res. 2016; 158:123-36. https://doi.org/https://doi.org/10.1016/j.still.2015.11.010